Probability generating functions for discrete real-valued random variables

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probability Generating Functions for Discrete Real Valued Random Variables

The probability generating function is a powerful technique for studying the law of finite sums of independent discrete random variables taking integer positive values. For real valued discrete random variables, the well known elementary theory of Dirichlet series and the symbolic computation packages available nowadays, such as Mathematica 5 TM, allows us to extend to general discrete random v...

متن کامل

Uniformly Generating Distribution Functions for Discrete Random Variables

An algorithm is presented which, with optimal efficiency, solves the problem of uniform random generation of distribution functions for an n-valued random variable.

متن کامل

Probability Generating Functions for Sattolo’s Algorithm

In 1986 S. Sattolo introduced a simple algorithm for uniform random generation of cyclic permutations on a fixed number of symbols. Recently, H. Prodinger analysed two important random variables associated with the algorithm, and found their mean and variance. H. Mahmoud extended Prodinger’s analysis by finding limit laws for the same two random variables.The present article, starting from the ...

متن کامل

Probability on Finite Set and Real-Valued Random Variables

One can prove the following four propositions: (1) Let X be a non empty set, S1 be a σ-field of subsets of X, M be a σ-measure on S1, f be a partial function from X to R, E be an element of S1, and a be a real number. Suppose f is integrable on M and E ⊆ dom f and M(E) < +∞ and for every element x of X such that x ∈ E holds a ≤ f(x). Then R(a) ·M(E) ≤ ∫ f E dM. (2) Let X be a non empty set, S1 ...

متن کامل

Probability generating functions of absolute difference of two random variables.

Communicated by Jerzy Neyman, August 1, 1966 1. All random variables considered in this note are nonnegative and integervalued. Generically, the probability generating functions (P. G. F.) of such variables are denoted by G with subscripts identifying the random variables concerned. The argument, or arguments of the P. G. F., denoted by either u or v, will be assumed to have their moduli less t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Теория вероятностей и ее применения

سال: 2007

ISSN: 0040-361X

DOI: 10.4213/tvp8